CO₂ Sequestration Market Development

Dwight Peters
Schlumberger Carbon Services
October 2, 2008

Comparative Scope

• Inject 41 MtCO₂/yr for enhanced oil recovery
 • Output of six 1000-Mw coal-fired plants
 • Moved safely hundreds of miles via pipeline
• 50 U.S. oilfields that produce >150,000 bbl fluid per day
 • Output of a 1000-Mw coal-fired plant
• No huge technical barriers to geologic storage of CO₂
 • But...EOR experience has been focused on the oil, not the CO₂
• Non-technical challenges, on the other hand, are huge
Similarities / Differences with Oilfield

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injectivity</td>
<td>Seal</td>
</tr>
<tr>
<td>Containment</td>
<td>Closure</td>
</tr>
<tr>
<td></td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
</tr>
<tr>
<td></td>
<td>Access</td>
</tr>
</tbody>
</table>

Other Similar Settings

<table>
<thead>
<tr>
<th>Natural gas storage</th>
<th>UIC / Acid Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smaller volumes</td>
<td>Regulation built to protect potable water</td>
</tr>
<tr>
<td>Shorter term focus</td>
<td>Regulated by EPA, not O&G</td>
</tr>
<tr>
<td>Losses accepted</td>
<td>No verification required</td>
</tr>
<tr>
<td>Use eminent domain</td>
<td>Limited “area of influence”</td>
</tr>
</tbody>
</table>
Performance and Risk Management

- Regulatory Framework
- Performance & Risk Assessment
 - Capacity
 - Injectivity
 - Containment
- Risk Treatment
 - Cost
 - Environment
 - Health & Security
 - Image
- Actions
 - Functions / Stakes
 - Cost
 - Environment
 - Health & Security
 - Image

Measurement for Characterization → Modeling → Monitoring Measurements

CO2 Injection Dynamic Modeling

- Improved fluid-fluid / fluid-rock interactions
- Accurate description of mutual solubilities
- Dry-out / salting-out effect
- Salt precipitation
- Swelling and shrinkage

ECLIPSE – E300

Upscaling

Calibration on monitoring measurements (History match)

Thermodynamics
Geochemistry

Thermal Modeling

Geomechanics Simulator

3D Full Compositional Flow Simulator
Commercial-Scale Storage Timeline

<table>
<thead>
<tr>
<th>Possible site</th>
<th>Probable site</th>
<th>Proven site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>acquisition</td>
<td></td>
</tr>
<tr>
<td>Detailed</td>
<td>characterization</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection & monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term Environmental monitoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance & Risk

Functions: Capacity, Injectivity, Containment >>> Stakes: HSE, Cost, Image

- **High**
- **Low**

Time

- 1 yr
- 2-3 yrs
- 5-7 yrs
- 30 yrs
- 50 yrs
- 100+

Total cost & uncertainty

- Prelim. study
- Detailed characterization
- Data acquisition
- Construction
- Includes time for plant construction
- Detailed characterization
- Data acquisition
- Validation
- Injection & monitoring

What Resources Will Be Needed?

People & Technology

- Geology
- Reservoir Engineer
- Petrophysics
- Geomechanics
- Hydrogeology
- HSE
- Project Management
- Geophysics
- Drilling Engineer
- Completion Engineer
- Geochemistry
- Economics
- Injection
- Tools for Team Integration

CO2 Technology

- Seismic Services
- Wellbore Integrity Evaluation
- Drilling & Completion
- Cementing
- Logging, Testing & Sampling
- Lab Analysis
- Data Processing
- Modeling & Prediction
- Data Management
- Monitoring
Non-Technical Needs

- Carbon value
- Pore ownership ruling
- Regulatory environment
 - Defined area of review
- Long-term liability
 - Insurance framework

Education Needs

- Sources
 - Comfort with the “risk” element
 - Coordinated timing on siting decisions
 - Working with PUCs
 - Parasitic load
- Public
 - What happens to the water?
 - Other long-term dangers
 - Value to them vs. cost
 - Communication methodology
Conclusion

- Good technology is available today
- Technology choices can impact risk
- High quality modern data sets need to be gathered prior to injection
- The integration of technologies with modeling tools is a skill
- Modeling tool selection is an important consideration

Keys to Success

- Pick the Right Site
 - Non-complex, depth, porosity, perm, extent, structure, caprock...
 - Some existing wells, but not too many
 - Access and capability for: 3-D seismic acquisition, logs, core, fluids, background
- Use the Right Technology
 - Proper density, resolution, noise limits, area of review
 - Value equivalent uncertainty reduction
 - Has impact on performance and risk
- Properly Integrate the Data
 - Requires an experienced, skilled, multi-disciplinary team
 - Unified modeling environment
 - Shared earth model, easily updatable - “Living”
Going Forward

- Non-technical factors are the key to progress
- Clear regulatory guidelines and long-term liability protection are needed for commercial involvement
- Resource requirements will be large
- Uncertainties can be managed with technology
- Expertise and technology must be valued and respected
- Thorough assessment and baseline characterization is the key to reducing cost
 - number of wells
 - frequency of monitoring
 - public acceptance