Scenario analysis of carbon capture and sequestration generation dispatch in the western U.S. electricity system

Gary Shu, Mort Webster, Howard Herzog
Research Assistant
MIT Carbon Capture and Sequestration Technologies
gshu@mit.edu

Anchorage, AK
October 1, 2008

Goals of this Presentation

• Explain dispatch model
• Demonstrate model capabilities
• Present example results
• Look for input on future scenarios from you
Motivation

• Limitations for CCS Deployment:
 ▪ Carbon sequestration sites are not ubiquitous
 ▪ Generation is highly dependant on transmission features

• Dispatch determines generator revenue and capacity factor

• Understand the economics and trade-offs of CCS sites to look for features of “good” CCS sites

Model – Software

• PowerWorld Simulator 13
 ▪ Calculates generation and load flows in electricity grid
 ▪ Commercial software
 ▪ Widely used in electricity industry

• Electricity Network Data
 ▪ Acquired from WECC (Western Electricity Coordinating Council) – some confidentiality
 ▪ Contains:
 ▪ 14 US States, 2 Canadian provinces, northern Baja California, Mexico
 ▪ Western Interconnection, CAISO, WESTCARB
Model – Data

• Electricity Network Data (cont.)

 ▪ 2,800 Generators of all types
 ▪ 58,000 mi. of transmission
 ▪ 190,000 MW of generation
 ▪ August 25, 2005 data

Model – Data (cont’d)

• Generator Data

 ▪ PowerWorld data contains no emissions data
 ▪ Matched with public data – EPA eGRID data
 • Also have WECC reports
 ▪ For most plants: fuel type, heat rate, emissions
 ▪ Cannot obtain: marginal cost / offer curves
 • Generator marginal costs are extremely confidential

 ▪ What we use: an approximation
 • Heat rate and fuel costs
 • Pollution costs of NOX and SOX
 • Also, cost of CO2 in scenarios
Model – Parameters

- Variable Parameters
 - Specific fuel costs
 - Coal, natural gas, oil
 - Non-dispatchable electricity costs
 - Hydro, nuclear, wind, solar, geothermal,
 - Pollution costs
 - Dispatch selection
 - Areas, specific plants
 - Fuels, types of plants
 - Load demand

<table>
<thead>
<tr>
<th>Input Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(units)</td>
</tr>
<tr>
<td>CO2 ($/tCO2)</td>
</tr>
<tr>
<td>NOX ($/ton)</td>
</tr>
<tr>
<td>SOX ($/ton)</td>
</tr>
<tr>
<td>Coal ($/MWh)</td>
</tr>
<tr>
<td>Oil ($/MMBtu)</td>
</tr>
<tr>
<td>Natural Gas ($/MMBtu)</td>
</tr>
<tr>
<td>Wind ($/MWh)</td>
</tr>
<tr>
<td>Hydro ($/MWh)</td>
</tr>
<tr>
<td>Geothermal ($/MWh)</td>
</tr>
<tr>
<td>Nuclear ($/MWh)</td>
</tr>
<tr>
<td>Biomass ($/MWh)</td>
</tr>
<tr>
<td>Other ($/MWh)</td>
</tr>
<tr>
<td>Unknown ($/MWh)</td>
</tr>
</tbody>
</table>

Model – Limitations

- Limitations of Dispatch Model
 - Marginal cost dispatch
 - Dispatch does not account for CapEx
 - Not a levelized cost of electricity calculation
 - Imperfect proxy for capacity factor due to markets/contracts
 - Generator data is incomplete – especially marginal cost curves
 - Unless work for CAISO, will never be perfect
 - Future work will involve refinement of costs
 - Updates to grid (transmission, generation) not modeled
Scenario Assumptions

• Hypothetical IGCC-CCS Plants
 ▪ Note: considering Nth-of-the-kind
 ▪ Capacity: 500 MWe
 ▪ Heat rate: 11,000 Btu/kWh
 ▪ 100% capture
 ▪ Reminder: marginal dispatch, no capital costs

• Transmission
 ▪ Plants connected to largest, closest transmission substation
 ▪ Transmission connections are short (minimize losses)
 ▪ Transmission connections are large (no local congestion)

Results – Central Valley, California

• Gates Substation
 ▪ Note abrupt turn-on with demand level

• Pastoria Substation
 ▪ More gradual dispatch
 ▪ Location dependent!
Results – Burns Substation, Oregon

- Even more abrupt turn-on

![Burns Substation Map](image1.png)

<table>
<thead>
<tr>
<th>Carbon Dioxide Price ($ per tCO2)</th>
<th>Generation (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>

- 70% load
- 75% load

Results – Nevada-California Border (Inyo Substation)

- Congestion limiting total plant dispatch
- Competing plants turning on

![Inyo Substation Map](image2.png)

<table>
<thead>
<tr>
<th>Carbon Dioxide Price ($/tCO2)</th>
<th>Generation (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>

- 60% load
- 65% load
- 70% load
- 75% load
- 80% load
- 90% load
- 100% load
Results – Centralia, Washington (1528 MWe CCS Retrofit)

- Heat Rate: 15,000 Btu/kWh

Results – Pastoria Substation, California

- Note: Previous runs used $5/MMBtu Natural Gas
- Fuel price affects dispatch
Summary

- Model is up and validated
 - Able to perform a variety of calculations
- Results show in general – CCS will be dispatched given high enough carbon price and load demand/congestion
- Next steps: calculate capacity factors and plant revenue
- Looking to members of WESTCARB for ideas of other types of simulations

Future Work

- Ideas
 - More specific capacity factor calculations
 - 24-hour dispatches
 - Seasonal dispatches
 - Revenue and profitability calculations against COE
 - More locations
 - Ideas greatly appreciated here
 - Different kinds of plants
 - Retrofits, IGCC, SCPC, oxy-fired, etc.
 - Variable capture percentage plants
 - Coals
 - Illinois #6 vs. PRB?
Thank you!

Questions and Comments Welcome

Gary Shu (gshu@mit.edu)
Mort Webster (mort@mit.edu)
Howard Herzog (hjherzog@mit.edu)

Appendix Slides
Scenario Assumptions

- Fuel Costs
 - Using August 25, 2005 data
 - slight modifications to validate case and model
 - issue – Hurricane Katrina
 - all generators face the same fuel costs
 - does not account for transportation or distribution cost
 - Coal (Powder River Basin): $1.42/MMBtu
 - Natural Gas: $5.00/MMBtu
 - NO\textsubscript{X}: $2,000/ton
 - SO\textsubscript{X}: $700/ton

Results – Four Corners, New Mexico
Results – Midway Substation, California

- Generation (MW) vs. Carbon Dioxide Price ($/tCO₂)
- Load scenarios: 60%, 65%, 70%

Results – Gates Substation, California

- Generation (MW) vs. Carbon Price ($/ton CO₂)
- Demand Load scenarios: 50%, 60%

Shu p.11
Results – Pastoria Substation, California (cont’d)

Model – Software

- PowerWorld Simulator 13
 - Calculates generation and load flows in electricity grid
 - Commercial software
 - Widely used in electricity industry

- Optimal Power Flow (OPF)
 - Takes transmission constraints into account
 - Used in our model

- Security-Constrained Optimal Power Flow (SCOPF)
 - Accounts for N-1 contingencies
 - Data currently unavailable