Getting to 2050
Pathways to deep reductions in GHG emissions

October 19, 2010
WESTCARB Annual Business Meeting
Sacramento, CA

Amber Mahone
Energy and Environmental Economics, Inc.

Defining the long term path

1. Bending the curve
2. Achieving historical levels
3. Deep reductions
Energy and Environmental Economics, Inc.

- San Francisco-based consulting firm since 1989
- Deep expertise in electricity sector
- Experienced in linking technical-economic analysis to policy decision-making and public process
- Skilled at placing near term energy choices in long-term, transformational perspective

California 2050 Study

- Key question
 - What does California need to do to meet the 2050 GHG reduction goal?
- Infrastructure modeling approach
 - Multi-sector, stock roll-over model
 - Integrated electricity grid dispatch algorithms
 - Use standard projections of CA population, economic growth
 - Consistent w/ AB32 Scoping Plan
- Independent study sponsored by Hydrogen Energy International (HEI)
"Back-casting" Scenario Approach

- ‘Baseline’ (875 Mt)
 - Business-as-usual GHG projection

- ‘2050 Compliant’ Scenarios (85 Mt)
 - Mitigation measures by sector constrained to meet emissions target
 - Residential, Commercial, Industrial, Agriculture, Petroleum, Transportation, and Other (Non-Fuel/Non-CO₂) Sectors

Greenhouse Gas Savings for 2050

Source: Energy and Environmental Economics, Inc 2009
Emissions Reductions by Source

Types of Change

Behavioral Change

Technological Change
Conservation & Energy Efficiency

+ “Smart Growth” 10% reduction in vehicle miles traveled relative to baseline
+ Unprecedented levels of energy efficiency
+ Transition to zero net energy homes by 2020
+ Extensive retrofits of existing buildings

Low-Carbon Biofuels

- Eliminate consumption of gasoline by 2050 replacing it with some mix of low-carbon electricity and low-carbon fuels
- Aggressive biofuel assumptions don’t meet all transportation energy needs – biofuels likely to become premium fuel

California Biofuel Availability

- 100% of California’s biomass feedstock for ethanol plus 7% of US feedstocks (DOE EIA 2007)
- Feedstocks include Ag Residues, Grasses and Forest Trimmings
- 7% assumes a distribution proportional to fuel consumption across all 48 States
- Assumes 1.8 billion gallons per year of algal biodiesel and bio-jet fuel

- Sufficient to meet 25% of biodiesel and 10% of bio-jet fuel demand in 2050 compliant case
Electrification & Electricity Demand

- Electricity demand could nearly double by 2050
- Increase in demand driven by electric vehicles
- Nearly all electricity must be from low-carbon generation

![Graph showing electricity demand by year and sector]

Electrification and Loads

- High levels of energy efficiency help to decrease demand and flatten the demand profile
- Off-peak electric vehicle “smart charging” & electrification will flatten load shape, increase overall demand & need for baseload generation

![Graph showing load profiles for 2050 Baseline and Compliant cases]

"Peaky" demand in 2050 Baseline
"Flat" load profile in 2050 Compliant case
Low-Carbon Generation

1. High Renewable Case
2. High Nuclear Case
3. High CCS Case
4. Blended Case

Investments to decarbonize electricity are significant in all low-carbon cases

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Capital Investment (Billion 2008$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Case</td>
<td>$100</td>
</tr>
<tr>
<td>Reference Case</td>
<td>$200</td>
</tr>
<tr>
<td>Blended Scenario</td>
<td>$400</td>
</tr>
<tr>
<td>High Nuclear Case</td>
<td>$500</td>
</tr>
<tr>
<td>High Renewables</td>
<td>$550</td>
</tr>
<tr>
<td>High CCS Scenario</td>
<td>$600</td>
</tr>
</tbody>
</table>
Generation Capacity in 2050

- Gas CT
- Biomass
- Geothermal
- Solar Thermal
- Solar PV
- Wind
- Nuclear
- Storage - 4 Hour
- Gas w/ CCS
- Coal w/ CCS
- Coal
- Combined Cycle
- Hydro

Grid Operations

- Mix of baseload, load-following, intermittent and peaking generation makes it easiest to maintain grid reliability and low-cost
- High nuclear case – energy is spilled or exported in some periods
- High renewables – additional energy storage is needed (12,000 MW)
- High CCS – assume some load-following capability from gas with CCS by 2050 leads to flexible grid operations
Additional Scenario Characteristics

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High Renewable Case</td>
<td>Long-line transmission needs, Large land footprint needs</td>
</tr>
<tr>
<td>2. High Nuclear Case</td>
<td>Nuclear waste disposal, Safety and proliferation concerns</td>
</tr>
<tr>
<td>3. High CCS Case</td>
<td>Commercialization needs, Long-term verification of storage</td>
</tr>
<tr>
<td>4. Blended Case</td>
<td>Depends on commercialization of multiple technologies</td>
</tr>
</tbody>
</table>

Technology Wish List

<table>
<thead>
<tr>
<th>Category</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Zero net energy buildings, Extensive building retrofits</td>
</tr>
<tr>
<td>Electrification</td>
<td>Batteries for electric vehicles, Smart charging for electric vehicles</td>
</tr>
<tr>
<td>Biofuels</td>
<td>Zero carbon ethanol, Zero carbon algal fuels</td>
</tr>
<tr>
<td>Zero Carbon Gen</td>
<td>Carbon capture and storage, Large scale energy storage, Nuclear waste storage</td>
</tr>
</tbody>
</table>
Low Carbon Technology Cost Risk vs. Oil Price Risk

- Our ‘best guess’ is that Compliant case costs $66 billion more than Baseline in 2050 (1.3% of California Gross State Product), with great uncertainty
- But current system is vulnerable to oil price volatility…

Where We Focus Now

- **Efficiency**
 - Energy use reduction through behavior change
 - Deep reductions in building energy usage

- **Zero-carbon Generation**
 - Integration of high levels of renewable generation
 - Commercialization of electricity energy storage
 - Commercialization of low-carbon generation technologies

- **Electrification**
 - Transportation sector in particular
Thank You

Amber Mahone
Energy and Environmental Economics, Inc.
101 Montgomery Street, Suite 1600
San Francisco, CA
94104

(415) 391-5100
amber@ethree.com

California 2050 Study Available at: