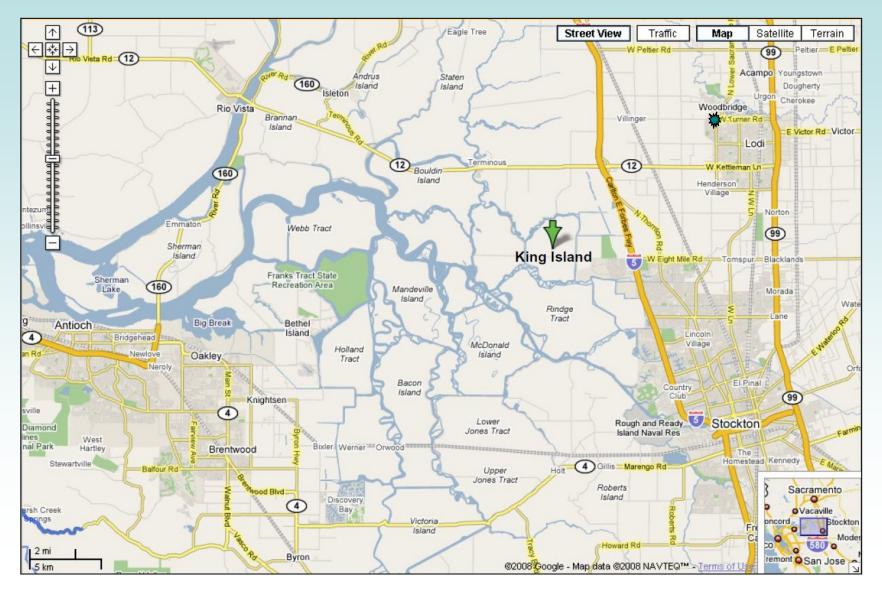
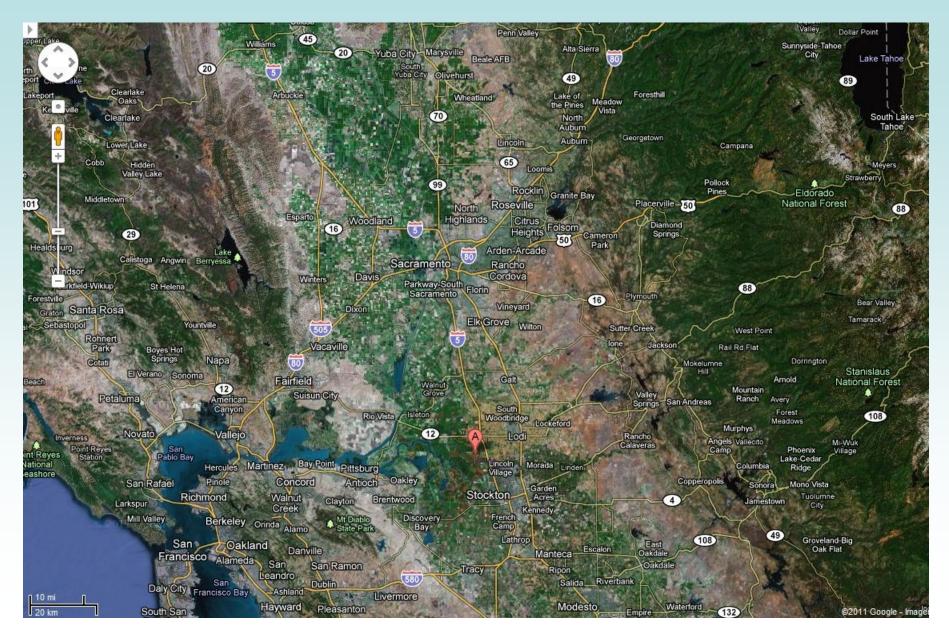


WESTCARB Annual Business Meeting

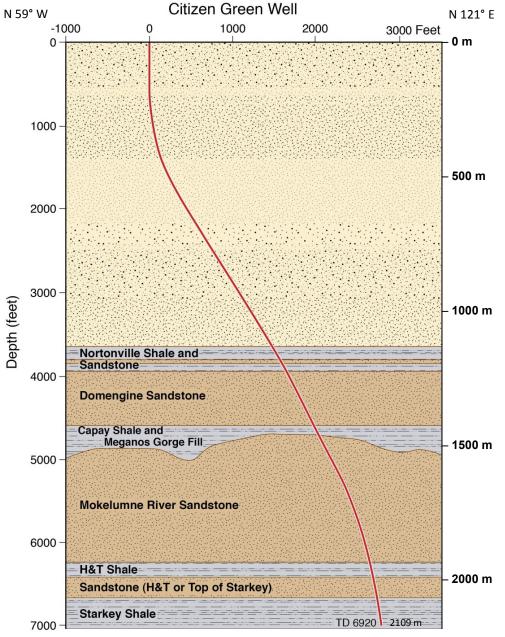
Bakersfield, California October 15-18, 2012


Geologic Characterization for CO₂ Storage in the Southwestern Sacramento Basin Based on Citizen Green Well Data

> John Henry Beyer WESTCARB Program Manager, Geophysicist


Lawrence Berkeley National Laboratory 510-486-7954, jhbeyer@lbl.gov

King Island Location in the Sacramento River Delta



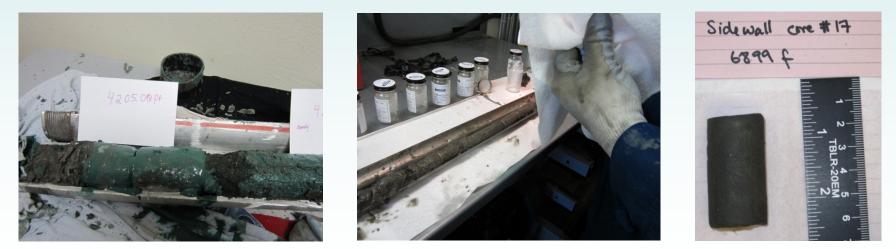
Citizen Green Well on King Island

Geologic column for the deviated Citizen Green well on King Island, California

Topography of the top of the Mokelumne River Formation based on an interpretation of 3D seismic data by Tom Fassio

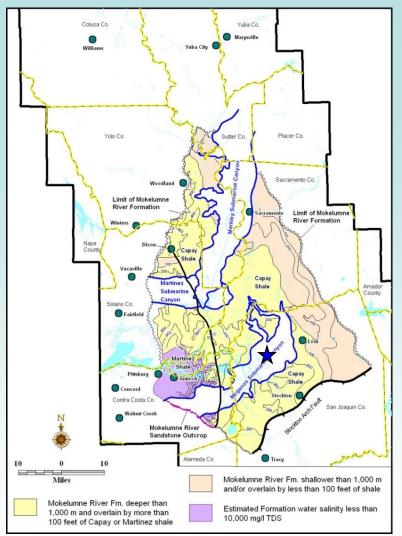
West Coast Regional Carbon Sequestration Partnership

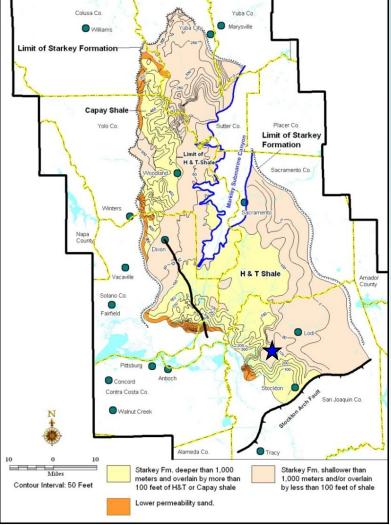
Equal horizontal and


vertical scales

Whole core (3.5-inch diameter) recovered:

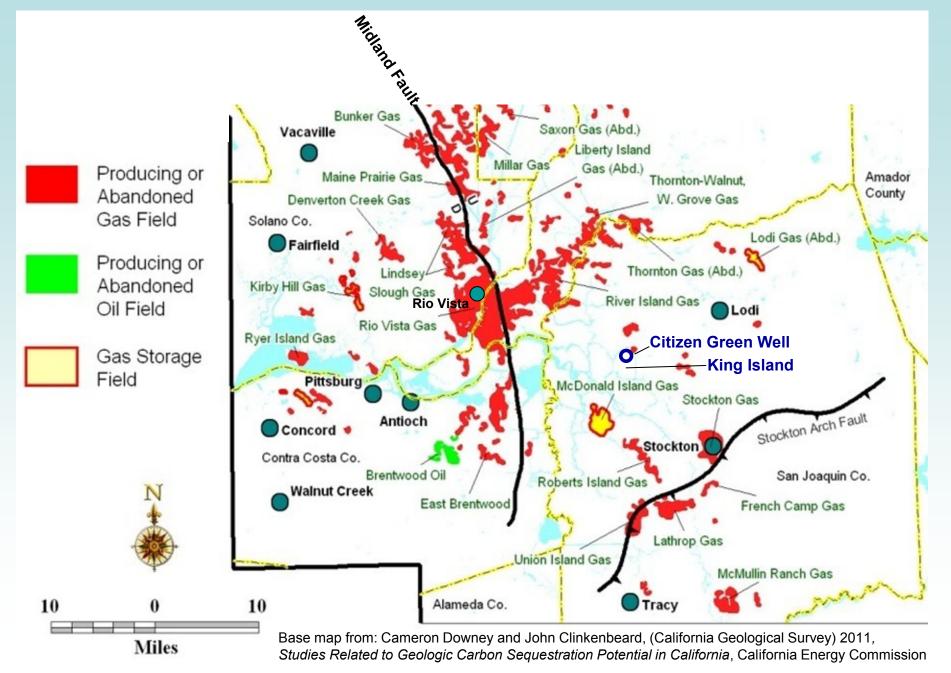
19 feet from the bottom of the Nortonville shale-top of the Nortonville sand 55 feet from the top of the Mokelumne River sandstone, mostly unconsolidated sand




44 sidewall cores (1-inch diameter, ~2.5 inches long) recovered from all formations Many sandstone cores are unconsolidated

Side wall core #	Calculated Vertical depth (feet)	Calculated Vertical Depth (meters)	Formation	Sample Comments - Burton	Side wall core #	Calculated Vertical depth (feet)	Calculated Vertical Depth (meters)	Formation	Sample Comments - Burton
50,49,48	3704	1129.0	Nortonville shale	core not recovered	20	6036	1839.8	Mokelumne ss	hard core-silty sand
47	3880	1182.6	Nortonville shale &	unconsolidated sand	19	6165	1879.1	Mokelumne ss	hard core-silty sand; not
46	4038	1230.8	Domengine sand	unconsolidated sand					convincingly shale; gradational
45	4151	1265.2	Domengine ss	unconsolidated sand		New York In			contact from Moke to H&T
44	4266		Domengine ss	removed for entrained gas	18	6203	1890.7	H&T shale	hard core-sandy shale
				analysis	17	6262	1908.7	H&T shale	definitely shale; removed for
42	4490	1368.6	Domengine ss	unconsolidated sand					entrained gas analysis
41	4572	1393.5	Domengine ss	unconsolidated sand	16	6283	1915.1	H&T shale	hard core-shaly, marly?
40	4605	1403.6	Capay shale	unconsolidated shale	15	6300	1920.2	H&T shale	hard core-sand
39	4612	1405.7	Capay shale	a very small piece of shale	14	6315	1924.8	H&T shale	1 piece partial-shale
38	4632	1411.8	Sand in Capay	unconsolidated sand	13	6334	1930.6	H&T shale	sand stringer; core not
37	4653	1418.2	Capay shale	unconsolidated shale	a				recovered
35	4685	1428.0	Capay shale	unconsolidated silty sand	12	6354	1936.7	H&T shale	hard core pieces-shale
34	4813	1467.0	Mokelumne ss	unconsolidated silty sand	11	6370	1941.6	H&T shale	hard core pieces-sand
33	5189	1581.6	Mokelumne ss	unconsolidated sand	10	6426	1958.6	H&T sand	hard core-sand
32	5254	1601.4	Mokelumne ss	unconsolidated silty sand	9	6464	1970.2	H&T sand or shale	hard core-sand; shale stringer
31	5423	1652.9	Mokelumne ss	unconsolidated sand					or still in H&T shale?
30	5451	1661.5	Mokelumne ss	unconsolidated sand	8	6496	1980.0	H&T sand	hard core-sand
29	5487	1672.4	Mokelumne (shaley)	clay-siltstone layer, removed	7	6530	1990.3	H&T sand or shale	hard core-sand with shale
				for entrained gas analysis	6	6585	2007.1	H&T sand	sand; removed for entrained
28	5558	1694.1	Mokelumne ss	unconsolidated sand					gas analysis
27	5621	1713.3	Mokelumne ss	unconsolidated sand	5	6614	2015.9	H&T sand	hard core-sand
26	5656	1723.9	Mokelumne ss	hard core, but not well	4	6666	2031.8	Starkey shale	hard core-shale
				consolidated	3	6704	2043.4	Starkey shale	removed for entrained gas
25	5718	1742.8	Mokelumne ss	unconsolidated sand					analysis
24	5782	1762.4	Mokelumne ss	hard core-silty sand	2	6738	2053.7	Starkey shale	2 large pieces and 1 small
23	5843	1780.9	Mokelumne ss	hard core-silty sand					hard core-shale
22	5907	1800.5	Mokelumne ss	hard core-silty sand	1	6775	2065.0	Starkey shale	hard core-shale
21	5972	1820.3	Mokelumne ss	hard core-silty sand	TD	6920	2109.2	in Starkey shale	

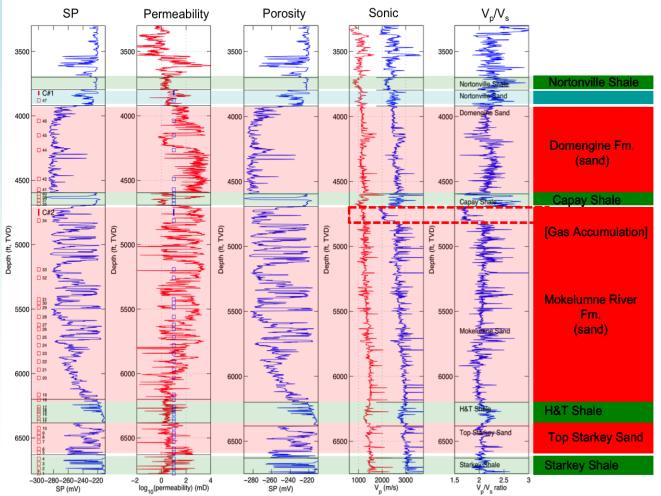
Capay shale and Mokelumne River sandstone


H&T shale and Starkey sandstone

At King Island, the Mokelumne River sandstone is gas-bearing in a pinnacle in the Meganos Gorge. The Capay shale overlies the pinnacle. The Domengine and Starkey sandstones are not intruded by the gorge. The well penetrated these potential reservoir formations and overlying shale seals.

Citizen Green well on King Island

Reference: Downey, Cameron, John Clinkenbeard, (California Geological Survey) 2011, *Studies Related to Geologic Carbon Sequestration Potential in California*, California Energy Commission



Schlumberger Logs Run

- Platform Express
- Elemental Capture Sonde
- Sonic Scanner
- Combinable Magnetic Resonance (CMR)
- Formation Microimager (FMI) (We can select up to 1000 feet of images)

- Could not run MDT tool to collect water samples.
- Gas column observed in the upper Mokelumne River Fm.
- Several high quality reservoirs and seals identified.

Citizen Green Well Data Analysis To-Date

Jonathan Ajo-Franklin

- Core sample porosity/permeability measurements correlated with well log NMR pore/perm data and thin section analysis
- Virtual petrophysical analysis and permeability modeling based on 3D micro CT imaging

Tim Kneafsey & Seiji Nakagawa

- CT scans of CO₂ and brine injections into a Domengine Formation core
- Seismic velocity and electrical resistivity measurements during CO2 injection

Mark Conrad

Mineralogical analysis of thin sections

Curt Oldenburg & Christine Doughty

 Multi-phase flow of simulations of CO₂ injection into the Mokelumne River Sandstone

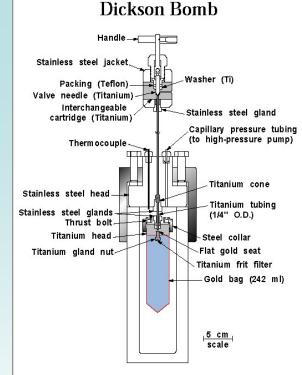
Citizen Green Well Data Analyses Not Yet Started

WESTCARB is seeking water samples from deep wells in the King Island area for geochemical experiments.

Kevin Knauss

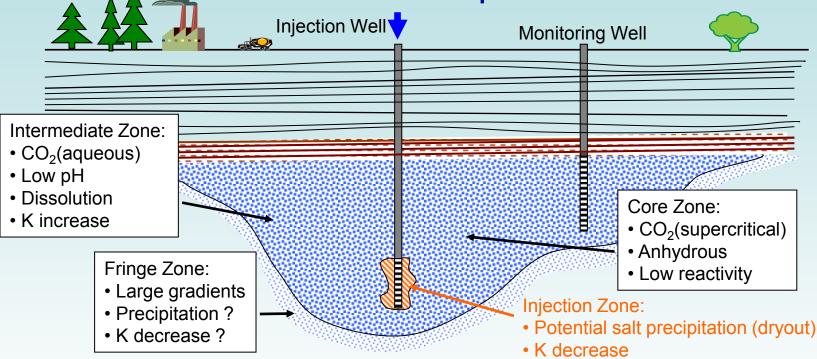
 High temperature/high pressure laboratory experiments to determine longterm geochemical interactions among the reservoir rock, CO₂, and brine

Nic Spycher


 Reactive transport simulation of injected CO₂ flow and trapping, considering geochemical reactions among the reservoir rock, CO₂, and brine

High Temperature/High Pressure Geochemical Laboratory Experiments

Kevin Knauss


Laboratory experiments on long term geochemical interactions among core, synthetic formation fluid, and CO_2 . These interactions determine the transport and fate of CO_2 in the deep subsurface.

Experiments are run at reservoir T and P, or higher T in the case of "accelerated" tests designed to maximize possible interactions. Geochemical reaction simulators are used to both design and interpret experiments. All work is closely coupled to the modeling effort at LBNL.

Reactive transport simulation of CO₂ Injection Nic Spycher

Geochemical Conceptual Model

Geochemical Processes to Consider

- Multiphase fluid flow (CO₂/H₂O)
- Mutual CO₂/H₂O solubility
- Aqueous- and gas-phase transport
- Porosity-permeability coupling

- Multicomponent reactions
 - Mineral precipitation/dissolution
 - Aqueous complexation
 - Surface complexation (as needed)
 - Gas dissolution/exsolution

