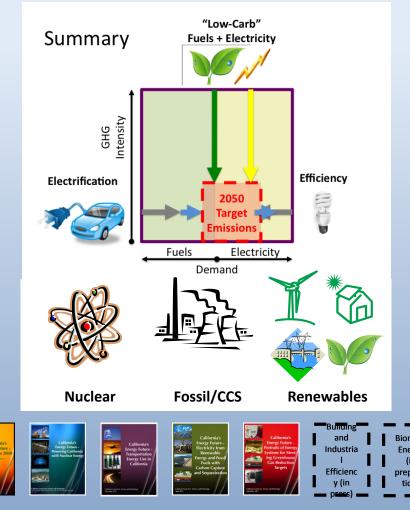
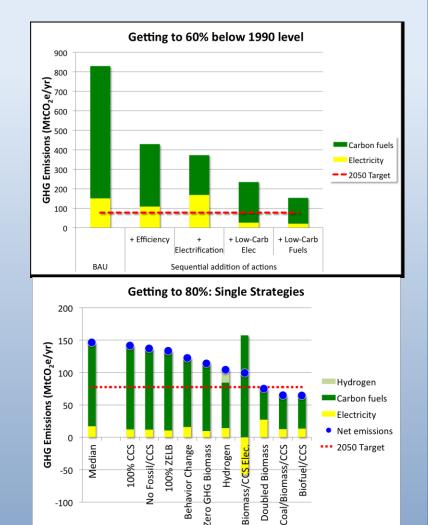


Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

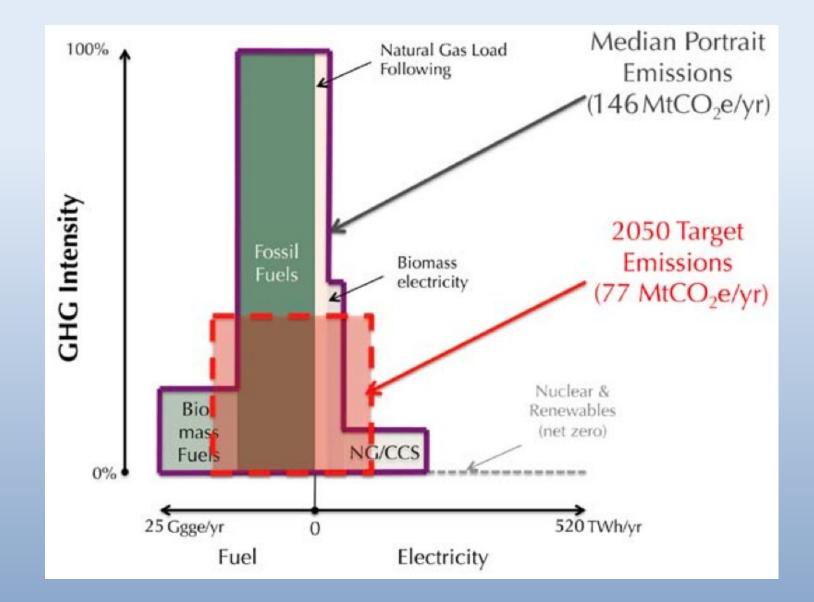
The Role of Carbon Capture and Sequestration in California's Energy Future


Jeffery Greenblatt, Ph.D. Lawrence Berkeley National Laboratory

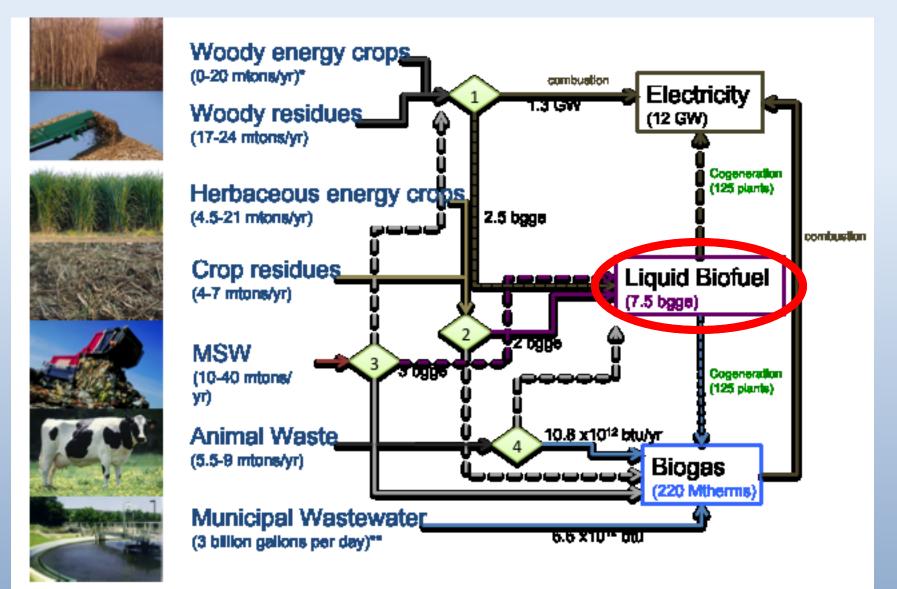

> Presentation to WESTCARB Bakersfield, CA October 17, 2012

California's Energy Future Project

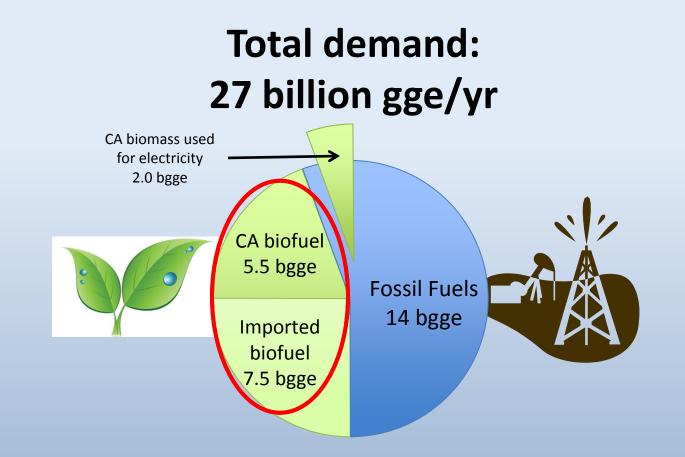
Sponsored by California Council on Science & Technology (CCST)


- Several pathways identified to achieve 60% reduction below 1990 by 2050
- Additional research necessary to achieve 80% reductions (low-GHG fuels and zero-emission load balancing are key) ٠
- Achieving post-2020 goals will require new policies, infrastructure and regional coordination •
- CCS plays a prominent role in several energy technologies .

-100


Getting to 80% GHG Reduction

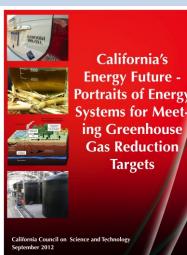
Strategies for Getting to 80%


		GHG Impact
1.	100% effective CCS	Small
2.	Eliminate fossil/CCS (use nuclear instead)	SIIIdii
3.	100% ZELB for load balancing	
4.	Behavior Change (10% reduction in demand)	
5.	Net-zero GHG biomass	Moderate
6.	Hydrogen from fossil/CCS	
7.	Biomass/CCS electricity (offsets GHG from fuels)	
8.	Double biomass supply	
9.	Coal/Biomass/CCS fuels (low GHG emissions)	Large
10.	Biomass/CCS fuels (negative GHG emissions)	
11.	Fuel from sunlight (need net-zero carbon source)	Trans-
12.	Fusion electricity or others?	formative

California Biomass

"technical recoverable yield (60-50% of gross biomass production depending on type). "not currantly used for energy production

California Biomass


If we import as much as we grow in California, we might provide about ½ the fuel demand where CCS is not possible

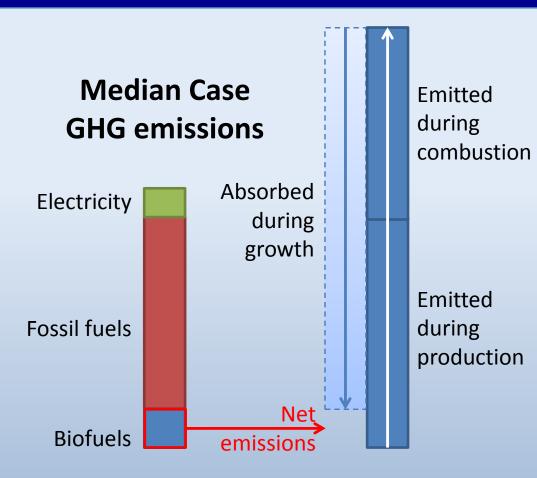
Carbon Capture and Sequestration

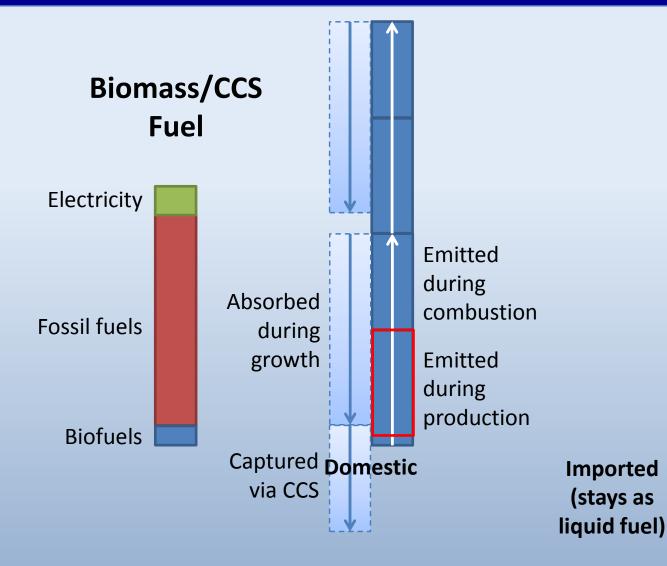
California Council on Science and Technolog

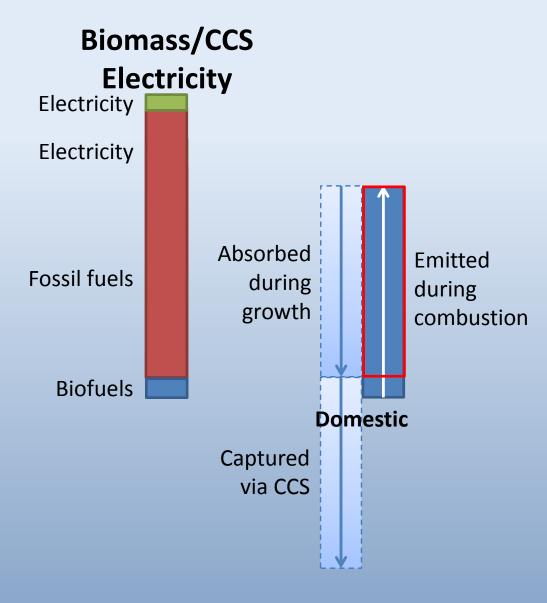
California's Energy Future -Electricity from Renewable Energy and Fossil Fuels with Carbon Capture and Sequestration

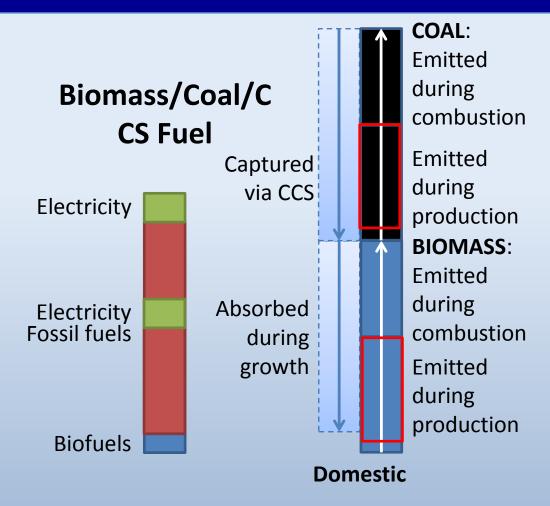
 Important technology for electricity generation

• Key strategy for achieving economywide low-carbon fuels:


• Biomass/CCS electricity


• Biofuel production with CCS


- Biofuels from biomass + fossil with CCS
- Hydrogen from fossil with CCS



	Units		Cases with CCS				
		Median Case	Biomass Electricity	Biomass Fuels*	Biomass/Coal Fuels*		
Biomass Supply							
Domestic	Mdt/yr	94	94	94	94		
Imported	Mdt/yr	94	94	94	94		
Total	Mdt/yr	188	188	188	188		
Biomass-based Outputs							
Fuels	Bgge/yr	13.0	7.5	12.2	19.0†		
Electricity	TWh/yr	25	95	27	26†		
Fuel demand met**	%	53%	30%	49%	80%		
Fuel GHG intensity	kgCO ₂ e/gge	2.19	2.37	-3.77++	1.12++		

GHG emissions

Statewide	MtCO ₂ e/yr	146	99	65	65
-----------	------------------------	-----	----	----	----

Hydrogen from Fossil/CCS

	Fract	tion of 2050 de	Underson	Hydrogen	
Sector*	Carbon fuels	Electricity	Hydrogen	Hydrogen efficiency	demand (GgH ₂ /yr)
Industry	51%	27%	21%	20% better than HC fuels	3,160
Light-duty vehicles	22%	22%	56%	79 mpgge	4,230
Heavy-duty vehicles	82%	9%	9%	25 mpgge	170
Buses	0%	0%	100%	70 seat-mpgge	420
TOTAL					7,980

- About 30% of fuel demand could be replaced with hydrogen
- Like fossil/CCS electricity, hydrogen is near net-zero GHG

CO₂ Storage Required

	Median	Biomass/ CCS Electricit Y	Biomass/C CS Fuels	Biomass/C oal/CCS Fuels	Hydrogen from Nat. Gas/CCS	Natural Gas/CCS Electricity
Rate in 2050 (MtCO ₂ /yr)	44	117	83	137	40	111
Cumulative (MtCO ₂)	454	N/A	N/A	N/A	N/A	1,146

 Beyond 2050, saline aquifers may be required (above ~5,000 MtCO₂ in-state storage)

Conclusions

- Getting to 80% GHG reductions in California by 2050 will require technologies focused on low-GHG fuel production
- CCS may play a prominent role in several technologies beyond low-carbon fossil-based electricity, including:
 - Negative-GHG biomass electricity
 - Negative-GHG biofuels
 - Zero-GHG fuels from biomass + fossil
 - Zero-GHG hydrogen
- All will require substantial CO₂ in-state storage capacity in 2050, with saline aquifers required by end of century

Questions?

jbgreenblatt@lbl.gov