Engineering-Economic Assessment of CCUS for California NGCC Power Plants

Richard J. Myhre, P.E.
Vice President, BKi
rmyhre@bki.com

Bakersfield, CA
October 17, 2012
Study Drivers

- California law requires GHG emissions reductions of approximately 25% below today’s levels by 2020; state policy is targeting >80% reductions by 2050
- ~50% of California’s electricity is generated with natural gas; with more renewables in the future, gas capacity will be key firming power, but will need to ramp/cycle
- California’s NGCC plant fleet (>50 units) is relatively young and operates at high capacity factors
- Many plants are above or near potential CO₂ sinks, including oil fields suitable for CO₂-EOR
- DOE estimates California’s incremental economically recoverable oil reserves at 5.4 to 8.1 billion barrels
Project Team

- California Energy Commission: project management, technical review, advisory committee meeting host

- California utilities: “voice of the customer,” real-world considerations: PG&E, Edison, Sempra, SMUD

- Shaw Group: technology review, modeling (base plant, capture plant, grid), cost estimating, conceptual design of pilot-scale unit

- Lawrence Livermore National Laboratory: CO₂ storage suitability screening, subsurface modeling

- Berkeley Lab, BKi, Visage Energy: technical/project management support and stakeholder communications

- Funding by DOE National Energy Technology Laboratory
LLNL Tasks: Geologic Screening of California NGCC Sites, Static Geomodel for Pilot Site

- Initial review of geology beneath 42 California NGCC power plant sites; report published in 2011
- LLNL geomodel development awaiting selection of site for pilot-scale conceptual design

3D geologic model of the San Joaquin Valley north of Bakersfield, CA
Shaw Tasks: Engineering-Economic Evaluation of Full-Scale Retrofit and New-Build CCUS Apps

- Gather and review data from technology developers, R&D institutions, and others
- Build Thermoflex model of a California-typical NGCC plant; build model of CO$_2$ capture plant (advanced amine based on data from cooperating suppliers)
- Engineer “balance of plant” systems and assess output and efficiency impacts; estimate capital costs
- Assess dispatch role in grid and estimate levelized costs
- Route CO$_2$ pipeline; estimate well field design and costs
Shaw Tasks: Feasibility Study (Conceptual Design) of NG-CCS Pilot Plant

- Identify opportunity to advance/validate a CO$_2$ capture technology particularly well suited for California: technology, site, permitting path, cost & schedule, etc.

- Provide foundation for potential multi-stakeholder collaborative field project

- Depending on scale, could include CO$_2$ utilization/storage ("full chain" integrated pilot); could be phased project approach

- Enhance technology portfolio for utility/PUC/CalISO strategies: AB 32, RPS, grid utilization/robustness
Representative Plant for Retrofit Cases

- 550 MW, GE Frame 7FA, 2 GT x 2 HRSG x1 ST
- Antioch, CA, conditions and location
 - Ambient: 100°F dry bulb, 69°F wet bulb, sea level
- Direct air-cooled condenser; air-cooling for auxiliary loads, including CO₂ compressors and solvent cooling
- 10-inch CO₂ pipeline; short run—no booster or wellhead pumps
- Three CO₂ injection wells with two monitoring wells per injection well
Shaw PCC Plant: Advanced Amine

- “Composite” design allows engineering judgment, fills data holes, avoids IP disclosure concerns
- Can only work with willing suppliers; still retains “black box” core
- Seven acre plot
- Differs from design for coal plants
Shaw Advanced Amine Post-Combustion CO$_2$ Capture Plant Design Iteration

- First pass akin to coal plant design philosophy: 90% capture at high ambient temperature design point

- WESTCARB study’s dry cooling requirement resulted in large air coolers and complex chilling systems—contributing to a total MW loss of 142 MW for retrofit case

- Second pass relaxed ambient temperature design point to annual average, meaning about half the time, the solvent temperature entering the CO$_2$ absorber will be higher than ideal, and CO$_2$ capture will be less than 90%

- Design change decreased annual CO$_2$ capture modestly, but eliminated capture-plant-related chillers, reducing the MW loss to 77 MW for retrofit case
Pipeline Routing and Well Field for Retrofit Case

- Short runs; rural setting, bridge crossing
- Modest cost; $29M of $860M EPC cost
- Potential EGR opportunities a little farther away
Approach to New-Build Analysis

- Nominal 550 MW, GE Frame 7FA.05, 2 GT x 2 HRSG x 1 ST

- Vacaville, CA, ambient conditions and location

- As with retrofit case, direct air-cooled condenser and air-cooling for CO$_2$ compressors, solvent cooling, etc.

- CO$_2$ transportation and storage reference has no booster or wellhead pumps; same nine-well approach
 - Longer pipeline over flat agricultural land with more installation types
 - Capital cost still modest, $53M of $1.56B EPC cost
CO₂ Storage – Vacaville Site

- Winters Formation (CGS studied for WESTCARB)
- Wells 5 mi apart in thickest part of formation
New-Build Results

- New build plant allows for better thermal integration of CO₂ capture and compression and base plant processes and modified equipment to better accommodate capture – reducing MW loss to 60 (from 77 in retrofit case) and saving about one third on a levelized cost basis.

- EPC cost estimate is $1.56B for NGCC-CCS plant vs. $664M for NGCC plant without capture.

- Capital Cost Breakout:
 66% Flue Gas Pre-treatment, CO₂ Absorption, CO₂ Stripping, Heat Exchanger, and Solvent Management
 15% BOP
 9% Compression and Dehydration
 9% Cooling
Lessons Learned

- For CO$_2$ capture and compression process involving substantial cooling loads, a dry cooling requirement will substantially increase cost.

- For solvent-based processes, finding a solvent that is effective at high operating temperatures (CO$_2$ absorber inlet), without undue regeneration heating requirements, should yield substantial savings.

- Cost estimate transparency promotes understanding.