

WESTCARB Regional Partnership

Geologic Carbon Sequestration Potential in Arizona

Jon Spencer, jon.spencer@azgs.az.gov Arizona Geological Survey Senior Geologist

WESTCARB Annual Business Meeting Bakersfield, CA

October 15–17, 2012

Arizona Geological Survey WESTCARB Phase III Objectives

- Identify and assess subsurface geologic formations in the Colorado Plateau and Basin and Range provinces of Arizona for CO₂ sequestration potential
- Identify areas where deep-groundwater salinity exceeds 10,000 milligrams per liter (mg/I TDS) in areas with potential for CO₂ sequestration

Ft				
۰ ٦			Wepo Formation	
		Cretaceous	Toreva Formation	• • • • • • • • • • •
1000 —			Mancos Shale	
			Dakota Sandstone	
			Morrison Formation	
		Jurassic Triassic	Entrada Sandstone	\cdot \cdot \cdot \cdot \cdot \cdot
2000 —	Mesozoic		Glen Canyon Group	
3000 —			Chinle Formation	
			Moenkopi Formation	=======
5000 —	i c	Permian	Coconino-De Chelly sandstones	
6000 —	0		Organ Rock Formation	
	еоz		Cedar Mesa Sandstone (Culter evaporites)	
	Pal	Pennsylvanian	Naco/Hermosa Formations	
		Mississippian	Redwall Limestone	
			Ouray-Elbert limestones-shales	
		Devonian	McCracken Sandstone	· · · · · · ·
			Aneth Formation	
		Cambrian	Bright Angel Shale	
			Tapeats sandstone	
»000 —		Precambrian		

Source: Errol L. Montgomery & Associates

17

Figure 6. Drill-hole bottom temperatures from 430 bore holes in northeastern Arizona.

Temperature vs density for CO₂ at different pressures

Table 2.1 of osity and pore volume for raieozoie sandstone and solow boom depth on the colorado riateau														
Basin and un	it	Area (l	km²)	Volume (km ³)	Porosi low (%	ty)*	Porosity mean (%)	Poro: high	sity (%)*	Pore volu low (km ³)	me	Pore v mean	volume (km ³)	Pore volume high (km³)
De Chelly ma	in		10133	339	9.3		14.3	3	19.3	31	15.57		485.23	654.90
De Chelly NE			345	3	7	9.3	14.3	3	19.3		3.44		5.28	7.13
De Chelly SE			172	1	3	9.3	14.3	3	19.3		1.69		2.60	3.51
McCracken			33578	53	1	2	Ĺ	ł	8	1	LO.63		21.25	42.50
Tapeats mair	ו		28661	150	1	1.2	2.4	ł	6	1	18.02		36.03	90.08
Tapeats sout	h		3645	5	C	1.2	2.4	1	6		0.60		1.20	3.00
Tapeats NE			603		3	1.2	2.4	ł	6		0.04		0.07	0.18
*De Chelly Sandstone (n=184): Porosity range is +/- one standard deviation														
*McCracken Sandstone (n=112): Porosity range is plus one standard deviation, minus one half of one standard deviation														
*Tapeats Sandstone (n=55): Porosity range is plus one standard deviation, minus one third of one standard deviation														
Table 3. CO ₂ storage capacity for Paleozoic sandstone units below 800m depth on the Colorado Plateau														
							I	ffective	Effective					
		Pore	Pore				Effective	oore	pore				Potential mas	s
	Pore	volume	volume	Storage S	torage	Storage	pore v	olume,	volume,		Potentia	al mass	of stored CO ₂	Potential mass
2004 992 2003		And the course of the course of the		converse spectra and a converse second			The second second second second		The second second	00 1 1		11 m 10 m		

Table 2. Porosity and pore volume for Paleozoic sandstone units below 800m depth on the Colorado Plateau

volume mean high volume, median CO₂ density of stored CO₂ Sandstone unit efficiency, efficiency, high of stored CO₂ efficiency, (tonnes), low (km³) (km³) low (km³) (km³) (km³) (km^3) (kg/m^3) median** (tonnes), high** and basin low* median* high* (tonnes), low** 485.23 De Chelly main 315.57 654.90 0.0051 0.02 0.054 1.6 9.7 35.4 750 1.21.E+09 7.28.E+09 2.65.E+10 1.31.E+07 De Chelly NE 5.28 0.0051 0.02 0.054 0.018 0.11 0.39 750 7.93.E+07 2.89.E+08 3.44 7.13 De Chelly SE 3.51 0.0051 0.02 0.054 0.009 0.05 0.19 6.47.E+06 3.90.E+07 1.42.E+08 1.69 2.60 750 3.19.E+08 1.72.E+09 McCracken 10.63 21.25 42.51 0.0051 0.02 0.054 0.054 0.43 2.30 750 4.06.E+07 3.65.E+09 Tapeats main 18.02 36.03 90.08 0.0051 0.02 0.054 0.092 0.72 4.86 750 6.89.E+07 5.40.E+08 0.60 1.20 3.00 0.0051 0.02 0.054 0.0031 0.024 0.16 750 2.30.E+06 1.80.E+07 1.22.E+08 Tapeats south Tapeats NE 0.04 0.07 0.18 0.0051 0.02 0.054 0.00019 0.0015 0.0099 750 1.40.E+05 1.10.E+06 7.40.E+06 Total 1.34.E+09 8.28.E+09 3.25.E+10 *Values are approximations from various lithologies in the United States, as given by Litynski et al. (2010) **E+09 indicates x10⁹

Depth-to-bedrock in Cenozoic basins of Arizona calculated from gravity and well data

Volume below 800m depth of Cenozoic sedimentary basins in Arizona

Structure

- Closed-basin in a half-graben, hingedfacies model
- Generally more deformation in the lower unit (folds, tilted bedding and faults)
- Fault activity present from late Miocene to late Pleistocene

Stratigraphy and Structure in the Safford Basin

- Evaporite and lacustrine basin centers with alluvial fan margins
- Lower basin filling unit is considered the primary target for CO₂ storage
- Sealing conditions present in both units, although vertical and lateral limits are unknown (subsurface data absent in largest of basin centers)

Well Data

Salinity

- Limited to six wells and 3 springs
- Ranges from 300 to 120,000 ppm
- Only one well
 >800m depth
 at 14,000 ppm
- Confining and geothermal conditions
- No iso-salinity contours

