Continuous Observation Well Sampling and CO₂ Plume Detection

Paul Cook
Research Associate
Lawrence Berkeley National Laboratory
PJCook@lbl.gov

Scottsdale, AZ
September 15–17, 2009

Local CO₂ Plume Detection at Observation Well

- Continuous well fluid sampling via U-tube
- Thermal property monitoring via Distributed Thermal Perturbation Sensor (DTPS)
U-Tube System

WEST CARB Annual Meeting, September 15-17, 2009

Cook p.2
U-Tube System

- N2 booster
- 6x N2
- EC
- T
- pH
- Standby
- waste tank
- load cell
- valve
- sample bag
- check valve

Flood

- N2 booster
- 6x N2
- EC
- T
- pH
- Flood
- waste tank
- load cell
- valve
- sample bag
- check valve
U-Tube System advantages over other sample methods

- High sample frequency (1 to 2 hour intervals)
- Downhole equipment kept simple (check valve)
- Large sample volume (tens to hundreds of liters compared to 1 liter for Kuster)
- Samples retrieved at reservoir conditions (pressure, fluid components)
- Real time analysis of sample stream (mass spec, pH, conductivity) also at reservoir conditions
- Frees up production tubing for other uses
U-Tube System CO2 detection

- Arrival detected by mass spectrometer

U-Tube System CO2 detection

- Arrival detected by well fluid density (load cells under sample cylinders)
U-Tube System other uses Geochemistry, Heterogeneity

- Samples brought to surface can be maintained at reservoir pressure for later laboratory analysis (fluid rock interaction, isotopic signatures)
- Long-term monitoring / sample retrieval
- Detection of injected tracers to determine established CO2 travel times (over time)
- Use of phase partitioning tracers to estimate residual saturation (how much CO2 is trapped, bearing on formation storage capacity during and after injection) and relative mobility of CO2 and brine.

Phase partitioning tracers

\[P_{\text{gas}}^{\text{tracer}} = K_h \times aq_{\text{tracer}} \]

- In a dynamic system (moving fluid) differences in solubility lead to different travel times for the two tracers which can be determined by arrivals detected by the sampling system
Phase partitioning tracers

• Aqueous phase (brine) saturation is can be found using tracers "y" and "u" by

\[S_a = \frac{1 - ty/ty}{1 - t_y/ty + \zeta_y t_y/ty - \zeta_y} \]

• Where \(t \) is the travel time of tracer \(y \) or tracer \(u \) and \(\zeta \) is the aqueous phase distribution coefficient (solubility) which is a known property of each tracer.

• Commonly used tracers are noble gasses (Ne, Ar, Kr, Xe) and SF6 which are inert and differ by their Henry's coefficients.

• Arrival time of SF6 vs Kr in sample stream (as determined by concentration)
Distributed Thermal Perturbation Sensor (DTPS)

- DTPS consists of a borehole length electrical resistance heater and fiber-optic DTS
- Apply constant heating along wellbore (monitoring entire length of well)
- Temperature transient is recorded (interested in cooling period, less local effect)
- Estimate
 - formation thermal properties
 - fluid advection
 - Saturation
- Long-term monitoring
- Passive mode (no heating)
DTPS: CO2 replaces Brine

About 40% reduction of effective t.c. by replacing brine by CO2

Effect is almost proportional to saturation

DTPS: Measured cooling at different depths
raw data

Model: geometric mean
Porosity: 0.2
T.C. of components (W/m*K):
brine: 0.6
CO2: 0.044

About 40% reduction of effective t.c. by replacing brine by CO2

Effect is almost proportional to saturation
DTPS: Measured cooling at different depths determining Kt

Freifeld et al., 2007 (Highlake site, Canada)

Good overall fit to baseline results (e.g. K2 marker horizon).

Distinct zone with decrease in thermal conductivity: main zone of CO2 injection.