Sequestration Program

Dawn Deel – Project Manager
September 15-17, 2009

Carbon Sequestration Program Goals

• Deliver technologies & best practices for Carbon Capture and Safe Storage with:
 – 90% CO₂ capture at source
 – 99% storage permanence
 – < 10% increase in COE
 • Pre-combustion capture (IGCC)
 – < 35% increase in COE
 • Post-combustion capture
 • Oxy-combustion
Key Challenges to Carbon Capture and Storage

Technical Issues
- Capture Technology
 - Existing Plants
 - New Plants (PC)
 - IGCC
- Cost of CCS
- Sufficient Storage Capacity
- Permanence
- Best Practices
 - Storage Site Characterization
 - Monitoring/Verification
 - Site Closure
 - Etc etc …

Legal/Social Issues
- Regulatory Framework
 - Permitting
 - Treatment of CO₂
- Infrastructure
- Human Capital
- Legal Framework
 - Liability
 - Ownership
 - pore space
 - CO₂
- Public Acceptance (NIMBY → NUMBY)

Projects helping to address both categories of issues

U.S. DEPARTMENT OF ENERGY • OFFICE OF FOSSIL ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY
CARBON SEQUESTRATION PROGRAM

Core R&D
- Capture
- Geologic Storage
- Monitoring, Verification, and Accounting (MVA)
- Simulation and Risk Assessment
- CO₂ Use/Reuse

Benefits
- Reduced cost of CCS
- Tool development for risk assessment and mitigation
- Accuracy/monitoring quantified
- Capacity validation
- Indirect storage

Infrastructure
- Regional Carbon Sequestration Partnerships
 - Characterization
 - Validation
 - Development

Benefits
- Human capital
- Stakeholder networking
- Regulatory policy development
- Visualization knowledge center
- Best practices
- Public outreach and education

Global Collaborations
- North America Energy Working Group
- Carbon Sequestration Leadership Forum
- International Demonstration Projects
- Asian-Pacific Partnership (APP)

Benefits
- Knowledge building
- Project development
- Collaborative international knowledge
- Capacity/model validation
- CCS commercial deployment

Demonstration and Commercialization Carbon Capture and Sequestration (CCS)

Lessons Learned

Deel p.2
Sequestration Program Statistics FY2009

Strong industry support
~ 39% cost share on projects

Federal Investment to Date
~ $631 Million

Diverse research portfolio
~ 80 Active R&D Projects

Recent Achievements

- IEA GHG International Review of the Regional Partnership large scale field tests – March 2008
 - RCSP was recognized as most significant program in the world today
 - Excellent program that will achieve significant results
- Produced 1st in series of Best Practice Manuals – Monitoring, Verification, and Accounting of CO₂ Stored in Deep Geologic Formations
- Numerous Phase II (Field Validation) Regional Partnership Projects Drilling, Injecting, Completed
- Phase III (Development Test) Regional Partnership Drilling, Injection Started
- Pipeline Study underway
- Two Funding Opportunity Announcements
 - Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants
 - Innovative and Advanced Technologies and Protocols for MVA, Simulation, and Risk Assessment in Geologic Formations
- Added 43rd State to Regional Carbon Sequestration Partnerships Initiative
West Coast Regional Carbon Sequestration Partnership
Annual Business Meeting
Scottsdale, AZ
September 15-17, 2009

U.S. DEPARTMENT OF ENERGY • OFFICE OF FOSSIL ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY
CARBON SEQUESTRATION PROGRAM

Core R&D
- Capture
- Geologic Storage
- Monitoring, Verification, and Accounting (MVA)
- Simulation and Risk Assessment
- CO₂ Use/Reuse

Benefits
- Reduced cost of CCS
- Tool development for risk assessment and mitigation
- Accuracy/monitoring quantified
- Capacity validation
- Indirect storage

Infrastructure
- Regional Carbon Sequestration Partnerships
- Characterization
- Validation
- Development

Technology Solutions
- Lessons Learned

Global Collaborations
- North America Energy Working Group
- International Demonstration Projects
- Asian-Pacific Partnership (APP)

Benefits
- Knowledge building
- Project development
- Collaborative international knowledge
- Capacity/model validation
- CCS commercial deployment

Demonstration and Commercialization
Carbon Capture and Sequestration (CCS)

Core R&D Focus Areas and Supporting Research Pathways

Capture (Pre-Combustion)
- Membrane
- Solvent-Based
- Sorbent-Based
- Novel Concepts

Geologic Carbon Storage
- Improved Fundamental Understanding
- Technology Development

CO₂ Use/Reuse Approaches
- Conversion of CO₂
- Non-Geologic CO₂ Storage
- Indirect Storage
- Beneficial Use of Produced Water
- Breakthrough Concepts

Simulation and Risk Assessment
- Mathematical Models Development and Verification
- Improved Risk Assessment Protocols

MVA
- Atmospheric and Remote Sensing
- Near-Surface Monitoring
- Wellbore Monitoring
- Subsurface Monitoring
- Accounting Protocols

Lessons Learned
- Human capital
- Stakeholder networking
- Regulatory policy development
- Visualization knowledge center
- Best practices
- Public outreach and education

North America Energy Working Group
- Carbon Sequestration Leadership Forum
- International Demonstration Projects
- Asian-Pacific Partnership (APP)
Research at NETL
(Office of Research & Development)

- Carbon Dioxide Capture: Advanced Plants
 - CO₂ membranes and ionic liquid solvents.
 - Solid sorbents for CO₂ capture and enhanced water-gas-shift.
 - Phase change sorbents and exploratory CO₂ re-use studies.
- Computational Science/Capture and Power Plant Simulations
 - Computational chemistry to develop capture materials.
 - Virtual scale-up for capture technologies.
 - Dynamic systems modeling for plants w/capture.
- CO₂ Storage (Science needs to ensure success of storage projects)
 - Integrity of seals and wellbores (e.g., cement-CO₂-water reactions)
 - CO₂ tracers with novel collection strategies (NETL designed monitoring packs; bees; airborne methods)
 - Improved assessment of capacity/injectivity w/ site-specific samples
 - Multiphase flow on discrete fractures (experiment and simulation)
 - NETL-led multi-lab initiative on science-based risk assessment
 • LANL, LLNL, LLNL, NETL, PNNL

LANL, LBNL, LLNL, NETL, PNNL

CO₂ Molecular modeling used to optimize CO₂ interaction with polyionic liquid

Experimental models (left) of cement integrity that correctly match field observations (right).

Determining the effect of confinement on coal storage capacity

CO₂

Dynamic simulation of IGCC power plant

FY09 Program Funding Opportunity Announcements (FOAs)

• Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants
 - Funding Opportunity Announcement DE-PS26-08NT00699
 - 9 projects selected;
 - ~$14 M total award value over 3-years ($3.1M Cost-share)
 - Project awards by end of FY09

• Innovative and Advanced Technologies and Protocols for MVA, Simulation, and Risk Assessment in Geologic Formations
 - Funding Opportunity Announcement DE-FOA00023
 - Released Feb 18, 2009; Closing Date May 12, 2009
 - 19 projects selected;
 - ~$34.7 M total award value over 4 years ($8.1 M Cost-share)
 - Awards Sept-Oct 2009

Deel p.5
Regional Carbon Sequestration Partnerships

- Engage regional, state, and local governments
- Determine regional sequestration benefits
- Baseline region for sources and sinks
- Establish monitoring and verification protocols
- Address regulatory, environmental, and outreach issues
- Validate sequestration technology and infrastructure

- 7 Regional Partnerships
- 43 States, 4 Canadian Provinces
- 350+ distinct organizations

Developing the Infrastructure for Wide-Scale Deployment
Regional Carbon Sequestration Partnerships

Program Phases

FISCAL YEAR

<table>
<thead>
<tr>
<th>Characterization Phase</th>
<th>Validation Phase</th>
<th>Development Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterize all RCSP regions for carbon capture and storage opportunities</td>
<td>Validate technologies through field testing at selected geologic and terrestrial site locations</td>
<td>Complete large-volume development tests of sequestration technologies that will help enable future commercial scale applications</td>
</tr>
</tbody>
</table>

$16 M DOE + $5 M CS

$120 M DOE + $45 M CS

Scale of 100 to 10,000 Tons CO₂

Scale of 1,000,000 Tons CO₂

UPDATED: National Atlas Highlights (Atlas II)

Adequate Storage Projected

Emissions ~ 3.8 GT CO₂/yr point sources

Conservative Resource Assessment

<table>
<thead>
<tr>
<th>Sink Type</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline Formations</td>
<td>3300</td>
<td>12,600</td>
</tr>
<tr>
<td>Unmineable Coal Seams</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>Oil and Gas Fields</td>
<td>140</td>
<td>140</td>
</tr>
</tbody>
</table>

Validation Phase Project Status

Geologic Projects

- **Saline formations (3,000 to 60,000 tons)**
 - Projects in Michigan, Mississippi, and Ohio have completed injection
- **Depleted oil fields (50 to 500,000 tons)**
 - Illinois Basin and North Dakota projects complete
 - Currently injecting in Alberta, New Mexico, Utah, Texas, Kentucky, and Mississippi
- **Coal Seams (200 - 18,000 tons)**
 - Central Appalachian project complete
 - Currently injecting in New Mexico, Illinois, North Dakota
- **Basalt formation**
 - Wallula, WA – Grande Ronde Basalt
- **Remaining injection projects scheduled to begin injection by end of 2009**
 - These injection tests lay the foundation and path for larger scale injections and ultimately integrated capture and storage tests
Stage 1. Site selection and characterization; Permitting and NEPA compliance; Well completion and testing; Infrastructure development

Stage 2. CO2 procurement and transportation; Injection operations; Monitoring activities

Stage 3. Site closure; Post-injection monitoring, Project assessment

Scale up is required to provide insight into several operational and technical issues that differ from formation to formation

Developing Phase – 10 years+ (FY2008 -2017+)

Development Phase Goals

• Assess
 – Injectivity and Capacity
 – Storage Permanence
 – Areal Extent of Plume and Leakage Pathways

• Develop
 – Risk Assessment Strategies
 – Best Practices for Industry

• Engage in Public Outreach and Education

• Support Regulatory Development
RCSP Phase III: Development
Large-Volume Geologic Field Tests

✓ Nine large-volume tests
✓ Injections initiated 2009 – 2011

<table>
<thead>
<tr>
<th>Partnership</th>
<th>Geologic Province</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Big Sky</td>
<td>Triassic Nugget Sandstone / Moxa Arch</td>
<td>Saline</td>
</tr>
<tr>
<td>2 MGSC</td>
<td>Deep Mt. Simon Sandstone</td>
<td>Saline</td>
</tr>
<tr>
<td>3 MRCSP</td>
<td>Shallow Mt. Simon Sandstone</td>
<td>Saline</td>
</tr>
<tr>
<td>4 PCOR</td>
<td>Williston Basin Carbonates</td>
<td>Oil Bearing</td>
</tr>
<tr>
<td>5 SECARB</td>
<td>Devonian Age Carbonate Rock</td>
<td>Saline</td>
</tr>
<tr>
<td>6 SWP</td>
<td>Lower Tuscaloosa Formation</td>
<td>Saline</td>
</tr>
<tr>
<td>7 WESTCARB</td>
<td>Regional Jurassic & Older Formations</td>
<td>Saline</td>
</tr>
<tr>
<td>8</td>
<td>Central Valley</td>
<td>Saline</td>
</tr>
</tbody>
</table>

2009 Injection Scheduled
2010 Injection Scheduled
2011 Injection Scheduled

CCS Best Practice Manuals
Critical Requirement For Significant Wide Scale Deployment
Capturing Lessons Learned

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Verification and Accounting</td>
<td>2009</td>
<td>2017</td>
<td>2020</td>
</tr>
<tr>
<td>Site Characterization</td>
<td>2010</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Simulation and Risk Assessment</td>
<td>2010</td>
<td>2017</td>
<td>2020</td>
</tr>
<tr>
<td>Well Construction and Closure</td>
<td>2010</td>
<td>2017</td>
<td>2020</td>
</tr>
<tr>
<td>Regulatory Compliance</td>
<td>2010</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Public Education</td>
<td>2009</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Terrestrial Sequestration Practices</td>
<td>2010</td>
<td>2016 – Post MVA Phase III</td>
<td>2020</td>
</tr>
</tbody>
</table>
DOE’s Global CCS Demonstration Role on Six Continents

<table>
<thead>
<tr>
<th>Location</th>
<th>Operations</th>
<th>U.S. Invol.</th>
<th>Reservoir</th>
<th>Operator / Lead</th>
<th>Int’l Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America, Canada</td>
<td>1.8 Mt CO₂/yr commercial 2000</td>
<td>2000-2011</td>
<td>oil field carbonate EOR</td>
<td>Encana, Apache</td>
<td>IEA GHG R&D Programme, CSLF</td>
</tr>
<tr>
<td>Saskatchewan Weyburn-Midale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America, Canada, Alberta</td>
<td>250,000 tons CO₂, 90,000 tons H₂S demo</td>
<td>2005-2009</td>
<td>oil field carbonate EOR</td>
<td>Apache (Reg. Part.)</td>
<td>CSLF</td>
</tr>
<tr>
<td>Zama oil field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America, Canada, British Columbia Fort Nelson</td>
<td>> 1 Mt CO₂/yr, 1.8 Mt acid gas/yr large-scale demo</td>
<td>2009-2015</td>
<td>saline formation</td>
<td>Spectra Energy (Reg. Part.)</td>
<td>CSLF</td>
</tr>
<tr>
<td>Sleipner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe, Germany CO2SINK, Ketzin</td>
<td>60,000-90,000 tonnes CO₂ demo 2008</td>
<td>2007-2010</td>
<td>saline sandstone</td>
<td>GeoForschungsZentrum, Potsdam(GFZ)</td>
<td>CSLF, European Commission, IEA GHG R&D Prog</td>
</tr>
<tr>
<td>Australia, Victoria Otway Basin</td>
<td>100,000 tonnes CO₂ demo 2008</td>
<td>2005-2010</td>
<td>gas field sandstone</td>
<td>CO2CRC</td>
<td>CSLF</td>
</tr>
<tr>
<td>Africa, Algeria In Salah gas</td>
<td>1 Mt CO₂/yr commercial 2004</td>
<td>2005-2010</td>
<td>gas field sandstone</td>
<td>BP, Sonatrach, Statoil Hydro</td>
<td>CSLF, European Commission</td>
</tr>
<tr>
<td>Asia, China, Ordos Basin</td>
<td>assessment phase CCS</td>
<td>2008-TBD</td>
<td></td>
<td>Ordos Basin</td>
<td>Shenhua Coal</td>
</tr>
</tbody>
</table>