Economics of CCS in the Western Power Grid and CCS Deployment Strategies as a Function of Emission Allowance Market Prices

Gary Shu, Mort Webster, Howard J. Herzog

Research Assistant
MIT Carbon Capture and Sequestration Technologies
gshu@mit.edu, mort@mit.edu, hjherzog@mit.edu

Scottsdale, AZ
September 15–17, 2009

Goals

- Review Dispatch Model
- Updates
- Methodology
- Results
- Conclusions and Future Work
Dispatch Model

- Motivation – accelerate deployment of CCS
 - determine effects of transmission constraint
 - ascertain best siting, policies and scenarios

- Transmission Dispatch Model
 - PowerWorld – commercial software
 - public databases – EIA, EPA
 - confidential data – WECC

Dispatch Model

- Western Interconnection
 - modeling entire area as dispatchable
 - (CAISO only restructured area)
 - 2,800 Generators of all types
 - 58,000 mi. of transmission
 - 190,000 MW of generation
 - August 25, 2005 data
Hypothetical IGCC Plants

- “Typical” IGCC with CCS equipment
 - Nth-of-a-kind
 - heat rate of 11,500 BTU per kWh
 - 100% capture
 - 500 MW-e capacity (except for a retrofit site)

- Drawbacks
 - only using marginal costs
 - does not model unit commitment, bilateral contracts
 - missing updates to generation, transmission, load

Updates Since Last Year

- More complete generator matching: >97% of capacity

- Using updated EPA eGRID data (eGRID2007), matches basecase annual emissions and heat rates

- Full scripted dispatch runs

- Linked geographical data to transmission data to allow for mapping
Model Area

- Using marginal costs for dispatch
 - fuel & emissions costs
 - unable to obtain exact costs - confidential

- Dispatching gas/coal/oil
 - have costs for other fuels
 - dispatching some other generation to prevent unsolvable situations

Methodology – (Last Year) – Individual Dispatches

- Gates Substation
 - Note abrupt turn-on with demand level

- Pastoria Substation
 - More gradual dispatch

Location dependent!
Methodology – System Load (2005)

- using CAISO hourly system load scaled up to WECC

![Graph showing hourly system load](image)
Methodology – Dispatches with System Loads

- economic dispatch with varying load

Methodology – Capacity Factor Calculations

- capacity factors calculated with dispatches

Gates Capacity Factor (for this scenario) 73.8%
Methodology – Carbon and Fuel Price Scenarios

- **Carbon Price scenarios**
 - add additional costs of carbon price based on generator emissions rates

- **Fuel Price scenarios**
 - comparing coal vs. natural gas
 - assuming hydro mostly limited to availability

<table>
<thead>
<tr>
<th>(units)</th>
<th>Cost</th>
<th>Dispatch?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 ($/CO2)</td>
<td>$100.00</td>
<td>n/a</td>
</tr>
<tr>
<td>NOX ($/t)</td>
<td>$ -</td>
<td>n/a</td>
</tr>
<tr>
<td>SOX ($/t)</td>
<td>$ -</td>
<td>n/a</td>
</tr>
<tr>
<td>Coal ($/t)</td>
<td>$25.00</td>
<td>ON</td>
</tr>
<tr>
<td>Coal ($/MMBtu)</td>
<td>$1.42</td>
<td>n/a</td>
</tr>
<tr>
<td>Oil ($/gal)</td>
<td>$2.00</td>
<td>ON</td>
</tr>
<tr>
<td>Oil ($/MMBtu)</td>
<td>$14.39</td>
<td>n/a</td>
</tr>
<tr>
<td>Gas ($/MMBtu)</td>
<td>$5.00</td>
<td>ON</td>
</tr>
<tr>
<td>Wind ($/MWh)</td>
<td>$30.00</td>
<td>off</td>
</tr>
<tr>
<td>Hydro ($/MMWh)</td>
<td>$30.00</td>
<td>off</td>
</tr>
<tr>
<td>Geothermal ($/MWh)</td>
<td>$50.00</td>
<td>off</td>
</tr>
<tr>
<td>Solar ($/MWh)</td>
<td>$100.00</td>
<td>off</td>
</tr>
<tr>
<td>Nuclear ($/MWh)</td>
<td>$50.00</td>
<td>off</td>
</tr>
<tr>
<td>Biomass ($/MMWh)</td>
<td>$1.00</td>
<td>off</td>
</tr>
<tr>
<td>Other ($/MWh)</td>
<td>$1.00</td>
<td>off</td>
</tr>
<tr>
<td>Unknown ($/MWh)</td>
<td>$1.00</td>
<td>off</td>
</tr>
</tbody>
</table>

Methodology – Carbon Prices and Capacity Factors

Change in Capacity Factor with $100 / ton-CO₂
(weighted by maximum capacity)

Increases and decreases over 1000 MW @ 100% capacity
Results – Hypothetical IGCC Plants

- 15 test IGCC-CCS plants
 - thirteen 500 MW-e
 - Centralia, WA
 - 1528 MW-e “retrofit”
 - 1000 MW-e new IGCC

- dispatched individually

- using base fuel scenario
 - coal: $25 / ton
 - gas: $3 / MMBTU

Results – Hypothetical IGCC Plants – Fuel Scenarios

Capacity Factor with $100 (black line) and $0 (orange fill) / ton-CO₂ Carbon Price
(weighted by maximum capacity)

coal \ gas
$3 per MMBTU
$5 per MMBTU

$25 per ton
$40 per ton
Results – Hypothetical IGCC Plants – Other Carbon Price Scenarios

coal - $40 per ton-CO₂ gas - $3 per MMBTU

Results – Hypothetical IGCC Plants – Other Carbon Price Scenarios

gas

coal

$3 per MMBTU

$5 per MMBTU

$25 per ton

$40 per ton

Shu p.9
Results – Hypothetical IGCC Plants – Heat Rates

- coal: $25/ton & gas: $3/MMBTU
- could represent different costs/stages of IGCC development
Results – Hypothetical IGCC Plants – Capture Rates

- coal: $25/ton & gas: $3/MMBTU
- partial capture rate
- 11,500 BTU per kWh

IGCC Capacity Factor with $100 (black line) and $0 (orange fill) / ton-CO₂ Carbon Price (weighted by maximum capacity)

100% capture | 50% capture | 0% capture
Results – Hypothetical IGCC Plants – Partial Capture

- coal: $25/ton & gas: $3/MMBTU
- different IGCC capture rates

Results – Hypothetical IGCC Plants – Capture Rates

IGCC Capacity Factor with $100 (black line) and $0 (orange fill) / ton-CO$_2$ Carbon Price (weighted by maximum capacity)
Conclusions

- low gas + high coal price scenario demonstrates greatest capacity factor difference
- high carbon price will dispatch IGCC
- modest carbon price will provide substantial capacity factor increase

Future Work
- additional fuel price scenarios, sites
- sensitivities of efficiencies/heat rate and emissions rate
- total dispatch cost accounting, carbon price comparison

Thank you!

Questions and Comments Welcome

Gary Shu (gshu@mit.edu)
Mort Webster (mort@mit.edu)
Howard Herzog (hjherzog@mit.edu)
Scenario Assumptions

• Fuel Costs
 - Using August 25, 2005 data
 • with slight modifications to validate case and model
 • issue: Hurricane Katrina
 - all generators face the same fuel costs
 • does not account for transportation or distribution cost
 - Coal (Powder River Basin): $1.42 / MMBTU
 - Natural Gas: $5.00 / MMBTU
 - NOX: $2,000 / ton
 - SOX: $700 / ton